
E
c

K
a

b

a

A
R
R
A
A

K
L
I
P
M
(
M
S

1

t
f
a
a
f
b
t
d

u
f
s
d
w
h
p
a
p
b

T

0
d

Journal of Chromatography A, 1218 (2011) 4340– 4348

Contents lists available at ScienceDirect

Journal  of  Chromatography  A

j our na l ho me  p ag e: www.elsev ier .com/ locate /chroma

nhanced  monitoring  of  biopharmaceutical  product  purity  using  liquid
hromatography–mass  spectrometry

ristoffer  Laursena,b,∗,  Ulla  Justesenb,  Morten  A.  Rasmussena

Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg C, Denmark
Novo Nordisk A/S, 2880 Bagsværd, Denmark

 r  t  i  c  l  e  i n  f  o

rticle history:
eceived 8 December 2010
eceived in revised form 15 February 2011
ccepted 26 April 2011
vailable online 6 May 2011

eywords:

a  b  s  t  r  a  c  t

LC–MS  is  a  widely  used  technique  for  impurity  detection  and  identification.  It  is  very  informative  and
generates  huge  amounts  of data.  However,  the  relevant  chemical  information  may  not  be  directly  acces-
sible  from  the  raw  data  map,  particularly  in reference  to  applications  where  unknown  impurities  are  to be
detected.  This  study  demonstrates  that multivariate  statistical  process  control  (MSPC)  based  on  principal
component  analysis  (PCA)  in conjunction  with  multiple  testing  is  very  powerful  for  comprehensive  moni-
toring  and  detection  of  an  unknown  and  co-eluting  impurity  measured  with  liquid  chromatography–mass
spectrometry  (LC–MS).  It is  demonstrated  how  a spiked  impurity  present  at low  concentrations  (0.05%
C–MS
mpurity detection
rincipal component analysis (PCA)
ultivariate statistical process control

MSPC)
ultiple testing

(w/w))  is  detected  and  further  how  the  contribution  plot  provides  clear  diagnostics  of  the  unknown  impu-
rity. This  tool  makes  a  fully  automatic  monitoring  of LC–MS  data  possible,  where  only  relevant  areas  in
the LC–MS  data  are  highlighted  for further  interpretation.

© 2011 Elsevier B.V. All rights reserved.
ignal preprocessing

. Introduction

Analytical monitoring of impurity profiles in biopharmaceu-
ical products (drug substances and drug products) is important
or tracking the product quality. Impurities may  potentially have
dverse effects and must be identified, qualified, and reported
ccording to the respective thresholds [1,2]. Increasing demands
or higher biopharmaceutical product quality has been facilitated
y developments in analytical instrumentation and computer sys-
ems. This trend leads to new and better tools for monitoring,
etection, and identification of new impurities in a timely fashion.

Analytical separation techniques based on high performance liq-
id chromatography (HPLC) with UV detection are commonly used
or determination of impurities in biopharmaceutical products. The
eparation and subsequent detection of compounds in a sample
elivers a chromatogram, which ideally allows separation of peaks
hich can be attributed to individual chemical compounds. For
igh-purity drugs, the target compound is present in excess com-
ared to a potential impurity. Hence, detecting the occurrence of

n unknown impurity co-eluting with the target compound is a
articular problematic challenge. Therefore, purity analysis of a
iopharmaceutical product often entails purity examination of the

∗ Corresponding author at: Novo Nordisk A/S, 2880 Bagsværd, Denmark.
el.: +45 30795458.

E-mail address: krfl@novonordisk.com (K. Laursen).

021-9673/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2011.04.080
target peak. Peak-purity examination should prevent co-eluting
impurities to escape detection in the conventional HPLC analysis
[3].

HPLC with diode array detection (HPLC-DAD) is a commonly
used method to conduct peak-purity examination. However, many
impurities are structurally related to the drug substance, and
their structure contains very similar chromophores, making purity
assessment based solely on HPLC-DAD data difficult and unreliable.
Coupling a mass spectrometer to a liquid chromatograph (LC–MS)
brings more selective signals to the table. LC–MS is probably the
most powerful technique currently available for pharmaceutical
analysis [4].  The technique is still under fast development, par-
ticularly in the mass spectrometry area, with vastly improved
sensitivity and resolution. However, such state-of-the-art high-
resolution instruments are considered rather costly for routine
analysis in a pharmaceutical manufacturing environment. More-
over, these high-resolution LC–MS instruments may  not contribute
with additional required information compared to conventional
low cost LC–MS instruments. Since a mass spectrometer (MS) sep-
arates compounds by their respective mass-to-charge ratios (m/z),
any difference in the m/z values between the impurities and the
drug substance will allow an unambiguous detection regardless of
similarities in their UV spectra. Therefore an impurity co-eluting

with the target peak will be separated in MS  as long as their m/z
values are different and ionization of the impurity is not suppressed
by the target compound. The LC–MS technique is very informative
and generates huge amounts of so-called three-way data, where

dx.doi.org/10.1016/j.chroma.2011.04.080
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:krfl@novonordisk.com
dx.doi.org/10.1016/j.chroma.2011.04.080
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ach sample is characterized by the intensity as a function of reten-
ion time and m/z. However, the relevant information from the
hemical point of view is not directly accessible from the raw data
ap, which makes manual interpretation tedious and often gener-

tes a bottleneck in the analysis process [5].  Furthermore manual
nspection of LC–MS data is prone to subjective decision-making
ikely to cause additional errors. Several advanced techniques for
he assessment of LC–MS peak purity and co-elution problems have
een reported during the last decades [6–9]. However, to comply
ith increased focus on process analytical technology (PAT) and

uality by design (QbD) there is a need for an automatic tool that
outinely monitors, detects, and extracts relevant signals from the
C–MS data where further interpretation and identification should
e focused. Furthermore, such a tool should detect relevant varia-
ion in the LC–MS map  quantitatively and in a statistically reliable
ay. This is a relatively unexplored area in LC–MS data analysis. A
owerful tool has recently been demonstrated on chromatographic
urity analysis by Laursen et al. [10]. That study demonstrates that
ultivariate statistical process control (MSPC) based on principal

omponent analysis (PCA) [11,12] applied on chromatographic data
s suitable for monitoring subtle changes in the chromatographic
attern. Unknown impurities co-eluting with the target compound
ere detected in the sum of squared residuals (Q) statistics, and

ontribution plots provided clear diagnostics of cause of the sub-
ly deviating chromatograms [10]. However, this approach might
uffer from lack of sensitivity when applied to LC–MS data. The
uge amount of data points combined with the discrete nature of
C–MS signals (i.e. sharp signals in MS  direction) makes detection
f unknown impurities a case of needle-in-the-haystack expedi-
ion. If a new LC–MS sample containing an unknown impurity is
tted to a PCA model based on normal operation condition (NOC)
C–MS samples, the resulting residuals would ideally hold infor-
ation about the unknown impurity. However, a few discrete

esiduals related to an unknown impurity would simply be masked
hen calculating the sum of squared residuals (Q). This makes Q a
on-sensitive measure for monitoring and detection of unknown

mpurities present in low concentrations. Therefore, a more dis-
riminative and sensitive measure is needed targeted towards the
ature of LC–MS data. Ralston et al. [13] proposed a statistical
nhancement to the typical application of multivariate statistical
echniques. The statistical enhancement uses confidence limits on
he residuals of each variable for fault detection rather than just
onfidence limits on the overall Q residual. The method detected
aults earlier than the basic Q residual contribution method typi-
ally used, but the enhancement proved primarily as a graphical
upport tool and not as a single value measure for control chart
onitoring.
In this study, the approach reported by Laursen et al. [10] is

eveloped to adapt the nature of LC–MS data and to enhance mon-
toring and detection of unknown impurities in an industrial insulin
ntermediate (DesB30). In-process samples are spiked with the
tructurally related human insulin drug product co-eluting with
esB30. MSPC based on PCA is combined with variable wise (mul-

iple) testing. This would enhance detection of discrete residuals
rom unknown impurities, as residuals of each variable are tested
gainst corresponding model residuals.

. Theory and methods

The general workflow of MSPC based on PCA follows a previ-

usly described trajectory [10,14]. The trajectory is divided in three
hases; the initial phase, the training phase and the application
hase (ITA). In this modified version, the training phase involving
CA modeling is extended with multiple testing as shown in Fig. 1.
 1218 (2011) 4340– 4348 4341

In the initial phase, appropriate historical LC–MS experiments
are collected and prepared for PCA modeling. In the training phase
a PCA model based on NOC LC–MS samples is developed (describ-
ing common cause variation) and multiple testing is applied on the
residuals. Finally, in the application phase new samples are fitted
to the model and the most significant variable is monitored in con-
trol charts developed in the training phase. Deviating samples are
diagnosed using multiple testing contribution plots to determine
causes of the deviating behavior.

2.1. Signal preprocessing

Once the LC–MS data has been collected, preprocessing methods
are required to correct, refine and filter the data. The quality of sig-
nal preprocessing is crucial in order to extract relevant (chemical)
information. The signal preprocessing was  divided into the fol-
lowing steps: baseline correction, normalization, alignment, data
reduction, and scaling. The preprocessing steps are described in
the following subsections. The practical implications of these pre-
processing steps are visualized in the result section.

2.1.1. Baseline correction
Baseline correction is commonly employed to eliminate inter-

ferences due to baseline drift. A variety of techniques for baseline
correction of LC–MS data are applicable and is reviewed by List-
garten and Emili [15] among others. In this study an efficient
and rather simple method for baseline correction is applied. The
method works by fitting a global polynomial (of a user-defined
order) to each extracted ion chromatogram and, through an iter-
ative routine, down-weighting points belonging to the signal. A
baseline is then constructed and subtracted from the original
extracted ion chromatogram. Upon selecting the polynomial order
and fraction of data points to use for determining the baseline, the
algorithm provides an objective and automatic preprocessing. The
baseline correction is similar to a previously described method by
Gan et al. [16].

2.1.2. Normalization
MS  signals are frequently corrupted by either systematic or

sporadic changes in abundance measurements. Normalization will
correct for bias due to errors in sample amount, possibly sam-
ple carry-over and drifts in ionization and detector efficiencies.
Normalization procedures enable a more accurate matching and
quantification between multiple samples. Different procedures for
normalization can be applied. Normalization values can be calcu-
lated on the basis of a global distribution for all detected features
(like sum, average or median of all intensities per run), or calcu-
lated from a specific sub-set of features, for instance from a spiked
protein that is used as internal standard [15,17].  In this application
the target peak purity might vary but the overall signal intensity
should ideally be the same for each sample. Therefore the sum of
all intensities is used as normalization value for each sample.

2.1.3. Alignment
As with every laboratory experiment, chromatographic sep-

aration is stable and reproducible only to a certain extent. The
retention time often shows large shifts, and distortions can be
observed when different runs are compared. Even the m/z dimen-
sion might show (typically much smaller) deviations. Pressure
fluctuations or changes in column temperature or mobile phase
may  result in shifted peaks.

Alignment of shifted peaks can be performed in various ways.

Very reproducible LC–MS data often need only a movement of the
extracted ion chromatograms a certain integer sideways for proper
alignment. This is characterized by a systematic shift and can eas-
ily be handled by the recently published icoshift algorithm [18].



4342 K. Laursen et al. / J. Chromatogr. A 1218 (2011) 4340– 4348

Initial phase

Data collection Signal preprocessing

Training phase

PCA modeling

Application phase

Control chart monitoring Detection & diagnosis

Multiple testing

ajecto

T
v
s
t
a
d
m
s

2

i
v
t
a
i
e

2

v
t
c
t
i
d
e
u
f
u
i
s
m
b
i

2

d
s
n
p

Fig. 1. The three phases according to ITA tr

he icoshift algorithm is based on correlation shifting of inter-
als and employs a fast Fourier transform engine that aligns all
pectra simultaneously. The algorithm is demonstrated to be faster
han similar methods found in the literature making full-resolution
lignment of large datasets feasible [18]. Yet, if peaks shift indepen-
ently from one another in the same extracted ion chromatogram,
ore complex shift correction is needed to correct for this non-

ystematic shift [19,20].

.1.4. Data reduction
The LC–MS map  of a sample is characterized by a collection of

ntensity measurements as a function of retention time and m/z
alue. To make the measurements more comparable, and to reduce
he huge amount of data points per sample, all intensities within

 user-specified bin level are summed. This technique puts all the
ntensities on a (time, m/z) grid. The bin size is selected based on
xperience.

.1.5. Scaling and centering
Scaling is crucial for the performance of the subsequent multi-

ariate statistical analysis. A fold difference in concentration for the
arget compound and an impurity is not proportional to the chemi-
al relevance of these compounds [21]. Therefore scaling is applied
o increase the model sensitivity on detecting small unknown
mpurities. Furthermore, scaling is crucial in order to bring the
istribution of data points close to a normal distribution. This is
specially important when multiple testing (like Student’s t-test) is
sed for difference analysis [22]. In many cases, a logarithmic trans-
ormation is used for stabilization of the variance. Furthermore,
sing log-transformed intensities, the disparity in fold differences

n between various signals is adjusted. As the final preprocessing
tep the samples are mean centered (the average unfolded chro-
atographic pattern is subtracted) to remove a common offset. This

rings each variable to vary around zero. This procedure is standard
n multivariate modeling that focuses on variability in data.

.2. MSPC based on PCA modeling combined with multiple testing

PCA and variable wise (multiple) testing offers two  different

imensions to statistical data analysis. Multiple testing aims at
eparating the variable space into variables with a significant- or
on-significant change, where PCA separates data into a systematic
art (D) and a non-systematic part (Q). In Fig. 2 this is schematized.
ry (initial, training and application phase).

Experiments where a high number of variables are evaluated on
possibly several outcomes involve testing of numerous hypotheses
where handling of error rates is of crucial importance. This disci-
pline is referred to as multiple testing. Multiple testing is widely
used for biomarker discovery in proteomics, and has been applied
in several difference analyses of LC–MS data intensities [15,23,24].
Both Wiener et al. [23] and Listgarten et al. [24] evaluate the inten-
sity differences between samples from two classes using t-tests on
every combination of time and mass to charge ratio, to find regions
of interest for further interpretation. However if multiple testing
is applied directly to preprocessed LC–MS data it would result in
detection of all intensity differences (i.e. both known according
to normal operating conditions and unknown features). Multiple
testing applied to PCA residuals would only result in detection
of unknown features, as the known features are described by the
model and expressed in the D-statistics.

With PCA the variation from many correlated (time, m/z) bins
in a data matrix X (with M rows of samples and N columns of bins),
can be decomposed into R (R ≤ N) linear principal components TPT

and a residual part E (M × N):

X = t1p1
T + t2p2

T + · · · + tRpR
T + E = TPT + E = X̂ +  E (1)

where T (M × R) is the score matrix and P (N × R) is the loading
matrix, with R components. X̂ is the matrix of predicted values.
The correct number of significant principal components can be
determined by using cross-validation to eliminate less important
directions in the data matrix [25]. In this way the dimensional-
ity of the data matrix is reduced while capturing the underlying
relationship between the variables. In standard PCA, each sample
is a vector of values. If one sample is a matrix of values (e.g. in
the case of LC–MS data), the sample matrix can be unfolded into a
vector. This allows standard application of PCA, but throws away
some of the information conveyed by storage in a matrix. Using
the information contained in all the measured signals simultane-
ously, MSPC charts are much more powerful in detecting faulty
conditions than conventional single variable SPC charts [26]. Once
the MSPC chart signals an alarm, the model can be scrutinized to
understand the cause of the alarm; hereafter a possible corrective
action can be taken. Faults can be due to deviation from common-

cause variation (detected in Q) and in the magnitude of the common
cause variation (detected in D). Fault detected in the D chart could
for example be caused by an increased amount of already mod-
eled compounds in the sample, and is described by the scores in
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ig. 2. Schematic overview of two different data analytical approaches for extractio

otelling’s T2. Hotelling [27] introduced the T2 for principal com-
onents, also referred to as D:

2 =
R∑

r=1

t2
r

�2
tr

(2)

here tr is the rth principal component score, �2
tr

is the variance
f the rth component and R denotes the number of principal com-
onents retained in the PCA model. Assuming normality for the

ndividual scores, the D-statistic can be expected to approximately
ollow a weighted F distribution and the upper control limit for the
-statistic can be calculated according to Jackson [28].

If a new sample, containing an unknown impurity, is predicted
y the model (based on pure samples), the sample is expected to
reak the correlation. Indications of the unknown impurity would
hen be represented in the residuals and monitored in Q:

 =
N∑

n=1

(xn − x̂n)2 =
N∑

n=1

(en)2 (3)

here xn and x̂n are a measurement of the nth variable and its
redicted (reconstructed) value, respectively which result in the
esidual en. N denotes the number of variables. Most commonly, a
ormal distribution to approximate a weighted Chi-square distri-
ution is used from which the upper control limit for the Q-statistic
an be calculated according to Jackson and Mudholkar [29].

However, as claimed earlier, a few discrete residuals related to
n unknown impurity would simply drown when calculating Q.
n order to detect the needle in the haystack we  device multiple
esting based on a simple t-test for each bin (n) as:

n = enew,n − ēref,n

sn ·
√

1 + M−1
(4)

here

2
n = 1

M − 1

M∑
i=1

(ei,n − ēref,n)2 (5)

nd

¯ ref,n = 1
M

M∑
i=1

ei,n (6)
here enew,n is the residual from the new sample for bin n, ēref,n is
he mean of the residuals from the reference samples for bin n. M
s the number of reference samples. sn is the standard deviation of
esiduals from reference samples for bin n.
formation from multivariate data. p refers to test probability,  ̨ is significance level.

The critical value of t is dependent on sample size. In order to
correct for this ambiguity t is transformed to a z-value through a
p-value:

P(Tdf ≤ tn) = ˚(zn) (7)

where Tdf is the t-distribution with df degrees of freedom, df = M − 1.
 ̊ is the cumulative distribution function of the standard Gaussian

distribution. This z-value is used as diagnostic measure for the cor-
responding (time, m/z) bin. The z-value and p-value reflects the
same statistics (Eq. (7))  and hence the behavior of the system. When
dealing with signals of interest in the area of p < 0.01, changes are
more easily captured by exploring the corresponding z-values e.g.
over production time.

2.2.1. Multiple testing
Handling of issues related to multiple testing is becoming more

important as number of features detectable from modern analytical
instruments is rapidly increasing. For example within the field of
proteomics from different platforms such as micro arrays, LC–MS,
GC–MS, and NMR  often numbers in thousands to tens of thousands
or even more is common [30]. Performing numerous univariate
significance tests on such highly multivariate data will lead to a
high false positive rate (FPR). The conservative Bonferroni factor is
a way  of controlling the error rate across all tests, known as the
family wise error rate (FWER) [31]. The Bonferroni factor is simply
a proportionality correction of the p-value threshold (˛) with the
inverse of the number of test. The Bonferroni correction is a crude
up front correction where all null hypotheses are assumed true i.e.
no difference what so ever. But data is seldom collected under the
assumption that there is no relation with a specified outcome. In
1995 Benjamini and Hochberg [31] developed control of false dis-
covery rate (FDR) as an alternative to Bonferroni factor in multiple
testing. Estimation of the FDR, contrary to FWER, does not assume
that all null hypotheses are true but estimates the proportion of null
cases and non-null cases from data. This procedure is shown more
powerful in detecting true non-null cases than procedures control-
ling the FWER [32]. Where the FPR predicts how many of the truly
null hypotheses are rejected, the FDR predicts how many of the
rejected hypotheses are in fact likely to be truly null. In proteomics
the aim is to discover biomarkers in order to develop biological
understanding. Here a list of significant biomarkers supported by
a FDR is relevant for reporting of results including statistical infer-
ence. In MSPC the primary scope is to deem a sample pure or impure
and secondly if impure to investigate the impurity contribution.
Both cases are dealing with issues related to multiple testing, but

as the scope is different, the estimation and extraction of a relevant
statistics is likewise. In the following subsection we derive a sin-
gle measure statistics, and estimate its distribution under normal
operator conditions.



4 atogr. A 1218 (2011) 4340– 4348

2

a
p
n
a
r
a
T
a

2

e
s
o
d
d
o

P

t
o
a
z
o
p
z
o
a
a
p
a
t
t
o
a
t

L

w

z

a

s

M

3

w
c
a
r
i
p

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
0

2

4

6

x 10
5

Retention time (min)

In
te

ns
ity

(A) Total ion chromatograms - BEFORE preprocessing

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
0

5

10

15

20
x 10

-3

Retention time (min)

In
te

ns
ity

(B) Total ion chromatograms - AFTER preprocessing
344 K. Laursen et al. / J. Chrom

.2.2. Single measure statistic for control chart
In Laursen et al. [10] the Q value was used for a new sample as

 measure for detecting subtle differences in the chromatographic
attern. The methodology devised here produces not one but N sig-
ificance tests where N is the number of bins. These are expressed
s a list of z-values; z1, z2, . . .,  zK. The largest values of z1, z2, . . .,  zK

eflect the bins where the new sample is most deviating. Impurities
re in excess and hence only large positive z-values are of interest.
he present method proposes use of the maximum z-value across
ll K bins as a measure in control chart monitoring.

.2.3. Distribution of the maximum z-value across N bins
Under normality assumptions for residuals within each bin, with

qual variance for calibration and new samples, the derived t-test
tatistics is T distributed with M − 1 degrees of freedom (M number
f calibration samples). The corresponding z-values are normally
istributed with mean zero and variance one. Assuming indepen-
ence between the K z-values it is easy to compute the distribution
f the maximum z-value:

(zmax ≤ z) = P(z1 ≤ z) · P(z2 ≤ z), . . .

, P(zK ≤ z) =
(

1√
2�

∫ z

−∞
e−½t2

dt

)K

(8)

In standard two-sided SPC charts an observation more than
hree standard deviations (3�) from normal operating conditions is
ften used as the critical limit. This correspond to a coverage prob-
bility of 0.9973 (1 − 2˚(−3) = 0.9973). As only maximum positive
-values are of interest here, the one-sided control chart thresh-
ld should reflect the same coverage probability. In accordance it is
ossible to calculate the corresponding threshold for the maximum
-values (z0.9973) such that P(zmax,K ≤ z0.9973) = 2˚(−3). This thresh-
ld only depends on number of bins (N). For N = 1000, z0.9973 = 4.55,
nd for N = 500, z0.9973 = 4.40. Independence between bins might be
n overly optimistic assumption, especially when chemical com-
ounds give signal in more than one bin. In order not to rely on
ssumptions concerning independence we use a heuristic itera-
ive approach on the calibration samples to estimate the critical
hreshold. The critical 3� limit is calculated by iteratively testing
ne reference sample against the remaining reference samples, cre-
ting a distribution of zmax values (zmax,1, zmax,2, . . .,  zmax,25). From
his a 3� limit is calculated as:

imit3� = z̄max + 3szmax (9)

here

¯max = 1
M

M∑
i=1

zmax,i (10)

nd

z2
max = 1

M

M∑
i=1

(zmax,i − z̄max)2 (11)

 is the number of reference samples.

. Experimental

Thirty in-process samples of the insulin intermediate DesB30
ere collected for routine quality control testing. All samples were

ollected under NOC, i.e. the process has been running consistently

nd only high quality products have been obtained. The 30 samples
epresent a substantial time period representing possible changes
n production. One sample was spiked with human insulin drug
roduct in five various levels from 0.01% to 0.15%. Human insulin is
Fig. 3. TIC profiles of all samples before (A) and after (B) preprocessing (baseline
correction, normalization and time alignment).

co-eluting with the structurally related target compound DesB30-
insulin, but has a different molecular weight and thus different m/z
values. Samples were injected into a gradient (0.05% TFA/10% ace-
tonitrile and 0.05% TFA/70% acetonitrile) LC–MS system consisting
of an Alliance reverse phase HPLC system (Waters, MA,  USA), a
Kinetex C18 column (150 mm  × 3 mm,  2.6 �m)  (Phenomenex, CA,
USA), and a MicroTOF-Q II mass spectrometer (Bruker Daltonics,
Bremen, D) operated with electrospray (ESI) in the positive ion
mode. ESI provides maximum intentsity of the MH4+ ions, why this
charge state was used in the calculations. All 30 NOC samples were
measured in one replicate, whereas the five spiked samples were
measured in five replicates each. The LC–MS data was collected
and exported as text files using a software tool called DataAnalysis
(Bruker Daltonics) and imported to Matlab version 7 (Mathworks,
MA,  USA) for further analysis. All software was  written in Matlab
using tools from PLS Toolbox (Eigenvector Research, WA,  USA) and
Statistics Toolbox (Mathworks).

4. Results and discussion

4.1. Initial phase

The 55 LC–MS samples (30 NOC samples and 5 × 5 spiked sam-
ples) were collected and organized as an M × N × O dataset X, with
M samples, N elution times, and O m/z values. A relevant LC–MS
window was chosen around the target peak, resulting in a 55
(samples) × 300 (retention times) × 200 (m/z values) dataset. For
baseline correction of the data, a second order polynomial was fit-
ted to each extracted ion chromatogram from each sample, based
on 50% of all data points. The settings were chosen upon ini-
tial investigation of different alternatives. Once the samples were
normalized by the sum of all intensities for each sample, time
alignment using icoshift was sufficient for proper alignment of the
LC–MS data. The corrected time axis was  calculated from the total
ion chromatogram (TIC) profiles, and then applied to the extracted
ion chromatograms (EIC) of the corresponding LC–MS sample. The

profile which showed the highest correlation with the remaining
TIC profiles was  selected as the target. For illustrative purpose, the
corrected versus the original TIC profiles for all samples is presented
in Fig. 3.
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To make the measurements more comparable, and to reduce
he huge amount of data points per sample, all intensities within a
ser-specified bin were summed. In this study, intensities within a
in size of 0.5 min  and 2 m/z  were summed. The bin size was  cho-
en so that single peaks were approximately represented within in

 bin. The binning reduced the number of data points from 60.000
o 1000 bin values per sample. Finally, a logarithmic transforma-
ion was used to adjust the variation in fold differences between the
arget peak and minor surrounding peaks, and to reduce the het-
roscedasticity of the noise [33]. In Fig. 4, the effect of data reduction
ransformation of a NOC sample is illustrated, showing that smaller
eatures around the target compound are enlarged due to binning
nd scaling.

.2. Training phase

The essence of the training phase is to model the common cause
ariation present in the LC–MS samples obtained under normal
perating conditions. The number of samples needed to construct a
epresentative NOC model and control charts depends on the appli-
ation. In this case study, a calibration set consisting of the first 25
hronologically ordered LC–MS NOC samples was  used to develop

 two component PCA model describing nearly 82% of the vari-
tion. The optimal number of PCA components to include in the
odel was selected based on the variance captured and on the

esults of leave-one-out cross-validation (data not shown). Vari-
nce captured flattens out somewhat after two components, and
oot mean squared error of cross-validation (RMSECV) has a clear
ocal minimum at two components, indicating that after this point,
he components just reflect noise. Furthermore, the inspection of
oadings confirmed that the first two components reflect real chem-
cal variation (Fig. 5).

The model was validated using an independent validation set
onsisting of the last five LC–MS samples. By inspection of the D-
nd Q-statistics (Fig. 6) it was confirmed that two  components
escribe the common-cause variation. All 30 NOC samples were
ithin the 95% quantile in both the D-statistic chart and the Q-

tatistic chart.
Both D- and Q-statistics are monitored during the training

hase. Nevertheless, as this study focuses on purity analysis; we

re primarily interested in the residuals. We  use the residuals to
dentify new, unanticipated peaks, which are not part of the nor-

al  chromatographic pattern and thus, the model. On the other
and, when developing the model in the training phase, both the

Fig. 5. 3D plot of the first
Fig. 4. LC–MS maps before (A) and after (B) data reduction of 60.000 data points to
1000 bin values, using a bin size of 0.5 min  and 2 m/z.
D- and Q-statistics are of interest. These statistics may  contribute
with important and complementary indications about samples to
exclude from the NOC model due to deviation in common-cause
variation (Q) and magnitude (D). In this case all 30 samples used

 two  PCA loadings.
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ig. 6. Plot of (A) D-statistics and (B) Q-statistics of calibration (circle) and validation
square) sample sets.

n the training phase are within their respective 3� limits in both
- and Q-statistics charts, and are therefore assumed to describe
ommon-cause variation.

.3. Application phase

To demonstrate the lack of sensitivity of ordinary Q-based MSPC
pplied to LC–MS data, a sample from the validation set was  spiked
ith human insulin drug product in five various levels from 0.01%

o 0.15%. Human insulin is co-eluting with the structurally related
arget compound DesB30-insulin, but has slightly different m/z val-
es. The five spiked samples (measured in five replicates) were
sed to evaluate the ability of detecting an unknown impurity co-
luting with the target compound. As indicated in the Q-statistic
hart (Fig. 7) none of the simulated chromatograms were detected
s faulty by falling outside the 3� limit.

As discussed earlier the Q-statistic measure suffers from lack of

ensitivity due to the needle-in-the-haystack expedition. In Fig. 8
he Q contributions are presented for a sample spiked with 0.15%
mpurity. Even though the contributions provide indications of an
bnormality around m/z 1450–1454 eluting at 12.5–13 min, the
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Q

Impurity spike level (%)

Q-statistics from PCA residuals (2 components)

Calibration set
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ig. 7. Plot of Q-statistics of calibration- (circle), validation- (square), and test sam-
les  (diamond).
Fig. 8. Plot of Q contributions from PCA prediction of sample spiked with 0.15% HI.

relevant diagnostics seems to drown when calculating Q. As a con-
sequence the relevant information is not detected and exploited.

Therefore, possible deviations were detected in the individual
bins using multiple testing rather than testing the overall residual
variation. The critical 3� limit was calculated by iteratively testing
one calibration sample against the remaining calibration samples.
In comparison with the theoretically derived critical value (4.55),
the data generated 3� limit is slightly lower (3.75). This controversy
is primarily due to the incorrect independence assumption which
produces a more conservative limit, but maybe also deviation from
the normality assumption in the t-tests. As indicated in Fig. 9, spike
levels down to 0.05% HI was  detected as faulty, falling outside the
3� limit.

The detection level was  tested using different selections of bin
size and consequently bin number. The detection level is here
defined as the lowest spike level where all five replicate samples
were detected as faulty, falling outside the 3� limit. In Fig. 10 the
results of different selections of bin size and corresponding impu-
rity detection level is presented. It appears from Fig. 10 that the
lowest detection level is obtained with a bin size from 30 to 60 s and
1–2 m/z value. The number of bins in that region varies from 500 up
to 2000 bins. Clearly too high complexity in terms of number of bins
will result in a higher critical test limit followed by a higher level of
detection. On the other hand in a coarse binning the signal disap-
pears with higher level of detection as a consequence. Though the

same consequence, the origin is different for the two  cases. For high
number of bins the detection limit is dependent on the false posi-
tive control in the modeling part, whereas for coarse binning effect
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Fig. 9. Plot of Z-statistics of calibration- (circle), validation- (square), and test sam-
ples (diamond).



K. Laursen et al. / J. Chromatogr. A 1218 (2011) 4340– 4348 4347

300 100 50 40 30

600 200 100 80 60

1200 400 200 160 120

3000 1000 500 400 300

6000 2000 1000 800 600

Bin size (seconds)

B
in

 s
iz

e 
(m

/z
)

10075603010

20

10

5

2

1

Impurity 
detection 
level (%)

0.05%

0.10%

0.15%

Not 
detected

Fig. 10. Results of different selections of bin size (and number of bins) and corre-
s
b

s
l
i
o
d
a
s
m
t
d
a
e
c
u

t
d
i
t
c
m
m

F

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 10
-3

E
IC

 in
te

ns
ity

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

T
IC

 in
te

ns
ity

Retention time (min)

TIC
EIC (m/z 1453)
ponding detection level. The total bin numbers are indicated in the figure for each
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ize vanishes for impure samples. Of course the impurity detection
evel examination presented here is optimized for this particular
mpurity, and is hence slightly biased downwards due to selection
f bin size. For a true detection level determination an indepen-
ent test set could be applied using the selected bin size. Ideally,

 more objective method for selection of bin size should be con-
idered. This is more likely an analytical discipline rather than a
athematical discipline. Future unknown impurities eluting close

o the drug substance are most likely structurally related to the
rug substance, and the impurities can be expected to show up in

 1000-fold difference compared to the drug substance. Hence, the
xamination presented in Fig. 10 may  not be that misleading, and
ould serve as a preliminary bin-tuning procedure before setting
p a reliable monitoring scheme.

To determine those variables responsible for the faulty detection
he Z contribution plot is examined (Fig. 11). Clear diagnostics of the
etected sample is provided, indicating that an unknown impurity

s found around m/z 1450–1454 eluting around 12.5–13 min. Fur-
her inspection of the highlighted area (data not shown) revealed
lear ion trace signals with a maximum intensity at m/z 1453. For

ore detailed diagnostics an extracted ion chromatogram (EIC) of
/z 1453 can be examined (Fig. 12).

ig. 11. Plot of Z contributions from PCA prediction of sample spiked with 0.05% HI.
Fig. 12. Plot of TIC and EIC (m/z 1453) of sample spiked with 0.05% HI.

From the EIC the elution profile of the unknown impurity is
provided. It would be difficult or impossible to detect a co-eluting
0.05% impurity peak if measured with HPLC. However with LC–MS
this challenge is possible and becomes practicable if assisted by
the automated methods demonstrated in this study. However, it is
important to clarify that MSPC should not be regarded as a replace-
ment of analytical knowledge when interpreting the LC–MS data.
Instead, MSPC should be seen as the means for creating robust and
highly interpretable multivariate models with the aim of monitor-
ing and detecting unknown features in large and complex LC–MS
data.

5. Conclusion and perspectives

This study demonstrates that MSPC based on PCA in conjunc-
tion with multiple testing is very powerful for monitoring and
detection of unknown and co-eluting impurities measured with
LC–MS. A spiked impurity present at low concentrations (0.05%)
was  detected and comprehensible contribution plot containing
clear diagnostics of the unknown impurity was  provided. From
examination of contribution plots for lower spike levels than 0.05%
(0.025% and 0.01%) large contributions from the unknown impu-
rity were highlighted, emphasizing the sensitivity of this method.
Trading off false negative signals by lowering of the critical limit
from e.g. 3� to 2� might enhance the detection limit further. This
tool will monitor and highlight only relevant areas in the com-
plex LC–MS data where further effort on interpretation should
be applied. Furthermore the tool proved robust towards treating
instrumental artifacts such as baseline- and retention time drift.
Applying this procedure for the detection of new peaks makes a
fully automatic monitoring of LC–MS data possible. Furthermore,
if implemented and operating while the purity analyses runs, this
tool may  considerably reduce time needed for subsequent assess-
ment of data, and operate according to the PAT concept aiming
for real-time release. Obviously the actual root cause of the alarm
is not automatically given when applying this tool. Such an anal-
ysis would need incorporation of chemical and technical process
knowledge and possibly applying MS/MS  fragmentation for further
compound identification. Label-free LC–MS data analysis is already
widespread in proteomics and may  well be increasingly important
in the pharmaceutical industry. However, many different types of

applications can be developed with LC–MS. Due to such variety of
possible applications and approaches it may also be challenging to
develop and incorporate a generic solution for processing and anal-
ysis of LC–MS data in commercial software. Nevertheless, this study
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